• Reuters


Scientists have described one of nature’s most intriguing phenomena: the shrinking of the skull and body of shrews as lean winter months approach and their subsequent regrowth for spring.

This exotic trait of the common shrew, a tiny insect-eating mammal inhabiting central and northern Europe and a large part of Asia, was first noted in the 1940s, but no previous research had studied changes in individual shrews.

The scientists caught, measured and X-rayed shrews near the German village of Moeggingen.

Individual shrews shrank their braincase by 15 percent on average, and up to 20 percent, from summer to winter. In the spring, their braincase regrew by 9 percent on average, and up to 13 percent, not quite returning to their original size. Body mass also decreased by winter and then increased in spring. Wild shrews live about 13 to 15 months and never regain their previous size.

“In these extremely high-metabolic animals, reducing body mass during winter, a period of resource scarcity, might increase their survival chances, as this would reduce food requirements,” said evolutionary biologist Javier Lazaro Tapia of the Max Planck Institute for Ornithology in Germany.

“And reducing brain size, as well as other tissues, might save energy, as the brain tissues are energetically so expensive. In other words, we are observing a wintering adaptation in terms of energy saving, an alternative strategy for a nonmigratory and nonhibernating species.”

Common shrews, whose favorite meal is earthworms, are very active and must eat constantly to supply their ravenous metabolism. They are territorial and solitary, starting fierce fights when meeting other shrews, and tolerate each other only during breeding season.

Regarding the biological mechanisms behind the shrinking and regrowth, Lazaro said braincase shrinkage is probably achieved by a resorption of tissue at the cranial sutures — the joints between skull bones — with a regeneration of bone tissue during the regrowth phase.

“If we think of our own skull and imagine it changing in size by 20 percent, this is astounding and unimaginable,” Lazaro said. “This image is what we want the reader to take home: how flexible seemingly rigid structures can be if evolution warrants it, making this tiny high-power engine of an animal so successful.”

The research was published on Monday in the journal Current Biology.

In a time of both misinformation and too much information, quality journalism is more crucial than ever.
By subscribing, you can help us get the story right.